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The photorespiratory pathway, in short photorespiration, is an

essential metabolite repair pathway that allows the

photosynthetic CO2 fixation of plants to occur in the presence

of oxygen. It is necessary because oxygen is a competing

substrate of the CO2-fixing enzyme ribulose 1,5-bisphosphate

carboxylase, forming 2-phosphoglycolate that negatively

interferes with photosynthesis. Photorespiration very efficiently

recycles 2-phosphoglycolate into 3-phosphoglycerate, which

re-enters the Calvin–Benson cycle to drive sustainable

photosynthesis. Photorespiration however requires extra

energy and re-oxidises one quarter of the 2-phosphoglycolate

carbon to CO2, lowering potential maximum rates of

photosynthesis in most plants including food and energy crops.

This review discusses natural and artificial strategies to reduce

the undesired impact of air oxygen on photosynthesis and in

turn plant growth.
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What is photorespiration?
Photorespiration, in contrast to the light-independent

processes of mitochondrial respiration, is the light-de-

pendent consumption of O2 and coupled release of CO2

that occurs simultaneously with photosynthetic CO2

uptake and O2 release in all plants, algae and cyanobac-

teria. Rates of plant photorespiration can be very high,

especially under conditions of high temperature and

water shortage. Globally, the process re-liberates an

estimated 29 Gt of freshly assimilated carbon per year

into the atmosphere [1,2]. On the molecular level, the

term photorespiration also connotes the photorespiratory

pathway as an integral component of the photosynthetic-

photorespiratory supercycle [3,4]. Photorespiration starts

when the CO2 fixation enzyme ribulose 1,5-bisphosphate
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carboxylase (RuBP carboxylase/oxygenase; Rubisco) of

the Calvin–Benson cycle (CB cycle) fixes O2 instead of

CO2 [5]. Oxygenation of RuBP forms 3-phosphoglycer-

ate (3PGA) and 2-phosphoglycolate (2PG), whereas car-

boxylation of RuBP forms 2 mol 3PGA. In C3 plants,

every third to fourth molecule of RuBP is oxygenated

rather than carboxylated at the present day air CO2/O2

ratio (0.04% CO2/20.95% O2) [1,6]. Accordingly, large

amounts of 2PG are produced during the day. Photores-

piration recycles two molecules of 2PG into one molecule

of 3PGA; thus, only 25% of organic carbon is lost as CO2

whereas 75% is salvaged and used to synthesize RuBP,

refilling the CB cycle.

The photorespiratory pathway involves more than 20 dif-

ferent enzymes and (mostly unidentified) transporters that

are distributed over at least three compartments in plant

cells, the chloroplast, the peroxisome, and the mitochon-

drion (Figure 1). Rubisco generates 2PG in the chloroplast.

2PG phosphatase (PGLP) dephosphorylates 2PG into

glycolate, which is exported from the chloroplast into

the cytosol by the recently discovered glycolate/glycerate

antiporter [7��] and then diffuses into the peroxisome. In

the peroxisome, glycolate oxidase (GOX) catalyses the O2-

dependent irreversible oxidation of glycolate to glyoxylate

giving rise to H2O2, which is quickly detoxified by catalase

(CAT). Still in the peroxisome, glyoxylate becomes trans-

aminated to glycine by the parallel action of glutamate:-

glyoxylate aminotransferase (GGAT) and serine:glyoxylate

aminotransferase (SGAT). The required glutamate is

imported from the chloroplast by exchange against malate

via dicarboxylate antiporters. Glycine then moves into the

mitochondrion where the glycine decarboxylase multi-

enzyme system (GDC) and serine hydroxymethyltransfer-

ase (SHMT) convert two molecules of glycine to one

molecule of serine, NH3 and CO2. In the oxidative decar-

boxylation step, GDC reduces NAD+ and to NADH.

Serine is exported from the mitochondrion back to the

peroxisome to return its amino group to glyoxylate in the

SGAT reaction, producing hydroxypyruvate (HP). Next,

another peroxisomal enzyme, HP reductase (HPR1),

reduces HP to glycerate. The necessary NADH is pro-

duced from malate oxidation by peroxisomal malate

dehydrogenase. The glycerate returns into the chloroplast

to become phosphorylated by glycerate 3-kinase (GLYK)

to finally yield 3PGA. This CB cycle intermediate is used

to regenerate the Rubisco acceptor molecule RuBP. Sev-

eral more enzymes are essential for the entire photore-

spiratory metabolism for example to re-assimilate the

photorespiratory NH3 in the photorespiratory nitrogen
Current Opinion in Chemical Biology 2016, 35:109–116
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The photorespiratory pathway and its interconnection with photosynthetic Calvin–Benson cycle and NH3 assimilation in higher plants. (2OG, 2-

oxoglutarate; 2-OS, 2-oxosuccinamate; 3PGA, 3-phosphoglycerate; Ala, alanine; Asn, asparagine; ASNS, asparagine synthetase; Asp, aspartate;

CAT, catalase; FD-GltS, ferredoxin-dependent glutamate synthase; GDC, glycine decarboxylase complex; GGAT, glutamate:glyoxylate

aminotransferase; Gln, glutamine; Glu, glutamate; GLYK, glycerate 3-kinase; GOX, glycolate oxidase; GS2, glutamine synthetase; HPR1,

hydroxypyruvate reductase; OAA, oxaloacetate; PGLP, phosphoglycolate phosphatase; Pyr, pyruvate; Rubisco, ribulose 1,5-bisphosphate

carboxylase/oxygenase; SGAT, serine:glyoxylate aminotransferase; SHMT, serine hydroxymethyltransferase.)
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cycle [8] or to remove inhibitory 5-formyl tetrahydrofolate

produced in a side-reaction of SHMT [9�].

Photorespiration is an energy-demanding process that

formally requires a total of 3.25 mol ATP and 2 mol

NADPH per one oxygenation of RuBP, which is about

one-third of the total energetic costs of CO2 fixation in air

[10]. Whereas the photorespiratory core pathway (net

reaction: 2 mol 2PG + O2! 3PGA + CO2 + NH3; see

Figure 1) consumes 1 mol of ATP for the phosphorylation

of glycerate to 3PGA via GLYK (0.5 mol ATP per oxy-

genation event), the reassimilation of the released am-

monia into glutamine and the conversion of 3PGA into

RuBP via the CB cycle is highly energy-demanding.

Why is there photorespiration?
The high energy demand of photorespiration and partic-

ularly the inherent loss of freshly assimilated CO2 raise

the question why this process exists? The answer is

relatively simple: the photorespiratory pathway in es-

sence renders the CB cycle insensitive towards oxygen.

All oxygenic phototrophs rely on the CB cycle with

Rubisco as the key carboxylating enzyme. The chemistry

of the Rubisco-catalysed reaction dictates that competi-

tive oxygenation occurs whenever O2 is present. The

essential role of photorespiration for enabling oxygenic

photosynthesis is clearly supported by many mutant

studies, which showed that knocking out genes encoding

photorespiratory enzymes results in the so-called ‘photo-

respiratory phenotype’, that is such mutants cannot grow

in ambient air but can be rescued in air with a 20-fold to

30-fold higher CO2 concentration than normal, where

RuBP oxygenation becomes inhibited [11,12]. Non-via-

bility in normal air is due to a combination of at least two

effects: RuBP deprivation of the CB cycle and inhibition

by 2PG of key enzymes such as chloroplastic triosepho-

sphate-isomerase and phosphofructokinase [3]. Addition-

ally, glyoxylate affects CB cycle operation by the

inhibition of Rubisco activase [13], and glycine accumu-

lation to some extent segregates magnesium from cellular

metabolism, which is the reason for the slow growth of

glycine-accumulating cyanobacterial mutants [14]. Pho-

torespiration prevents or at least minimizes these harmful

processes, and this comes at a price.

The photorespiratory pathway is an ancient
process and varies among organisms
It was initially thought that photorespiration evolved in

response to the low CO2 and high O2 concentrations

prevailing when streptophytes (comprising charophytes,

bryophytes, and vascular plants) colonized land and

higher plants developed [15]. It is now considered most

likely that the basics of photorespiratory metabolism co-

evolved together with oxygenic photosynthesis in cyano-

bacteria [12]. The present view is essentially based on two

lines of evidence. First, plant-like photorespiratory me-

tabolism was demonstrated in cyanobacteria [16��], green
www.sciencedirect.com 
algae [17] and more recently in red algae [18�]. Second,

the reconstructed phylogenies of photorespiratory

enzymes reflect their ancient origins in different groups

of prokaryotes that served as eukaryotic host cell or as

endosymbionts for the origin of mitochondria and plastids

[19].

Over geologic times, a number of adaptations occurred

leading to variations in the photorespiratory metabolism.

Most cyanobacteria metabolize 2PG not only by the

plant-like photorespiratory cycle, but can also convert

2 mol glyoxylate into glycerate using the bacterial glyce-

rate pathway with tartronate-semialdehyde as intermedi-

ate [16��]. This pathway also releases one CO2 per two

molecules of 2PG but does not require transamination of

glyoxylate and hence does not release ammonia, which

makes it more energy efficient. Moreover, some cyano-

bacterial strains have the potential to completely oxidize

glyoxylate into CO2 [16��]. Cyanobacteria as well as

chlorophytes evolved glycolate dehydrogenase-(GDH)-

based photorespiration, which is not producing the by-

product H2O2 and gains NAD(P)H, in contrast to GOX-

based photorespiration in other eukaryotic alga [18�,20]

and plants.

Photorespiration is a major metabolic
pathway and a target for crop improvement
As outlined before, the repair of the consequences of

RuBP oxygenation occurs very efficiently, salvaging three

out of four glycolate carbons for photosynthesis [12], but

nevertheless comes at the cost of losing some freshly

assimilated CO2 and extra energy that is required for the

recycling of 2PG into RuBP and particularly of photo-

respiratory NH3 into glutamate nitrogen. This is why

photorespiration has been a key target of crop improve-

ment for decades and the respective approaches gained

fresh momentum in recent years [21,22�]. Present-day

strategies focus on the improvement of Rubisco proper-

ties [23] and the establishment of CO2-concentrating

mechanisms (CCMs) into C3 plants [24,25,26] to reduce

2PG production, the optimisation of the photorespiratory

pathway to achieve 2PG recycling for example without

NH3 release [27], the exploitation of regulatory feedback

from the photorespiratory pathway to the CB cycle to

enhance gross photosynthesis [3], and finally the genera-

tion of artificially designed CO2-assimilation pathways

[28�] (Figure 2).

Reducing photorespiratory activity by alternative

Rubisco variants and CO2-concentrating mechanisms

Photorespiration is initiated by the low CO2 specificity of

Rubisco, which also catalyses the oxygenase reaction

leading to the necessity of 2PG recycling. Concerning

the ‘improvement’ of Rubisco, for example by directed

evolution [29], significant progress was made in recent

years though additional effort will be necessary to pro-

duce transgenic plants with improved photosynthesis
Current Opinion in Chemical Biology 2016, 35:109–116
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Figure 2
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Schematic display of strategies aiming to improve plant growth by manipulating photorespiration. Strategies to improve Rubisco properties and

carboxylation efficiency by generating CCMs such as cyanobacterial carboxysomes in C3 plant chloroplasts are displayed at the left side. Artificial

bypasses (explained in the text) to decrease photorespiratory NH3 release and/or to increase CO2 concentrations in the chloroplasts are shown in

the central part. The GDC scheme at the right side represents recent findings that increased GDC activity leading to enhanced photorespiratory

flux improved photosynthesis and plant growth most likely due to regulatory feedback on Calvin–Benson cycle activity. (2PG, 2-phosphoglycolate;

3PGA, 3-phosphoglycerate; Ac-CoA, acetyl-CoA; CA, carbonic anhydrase; CAT, catalase; GA, glycerate; GDC, glycine decarboxylase complex;

GCL, glyoxylate carboligase; GDH, glycolate dehydrogenase; GL, glycolate; GLY, glycine; GOX, glycolate oxidase; GX, glyoxylate; HP,

hydroxypyruvate; HYI, hydroxypyruvate isomerase; MAL, malate; ME, malate enzyme; MS, malate synthase; PDH, pyruvate dehydrogenase; PYR,

pyruvate; RuBP, ribulose 1,5-bisphosphate; SER, serine; TSA, tartronate-semialdehyde; TSR, tartronate-semialdehyde reductase.)
[30,31��]. It shall be noted that some authors argue

Rubisco may be nearly perfectly optimised for the natural

habitats of the respective species [32�,33�].

A different approach aims at exploiting several naturally

occurring CCMs by which C4 plants, algae and cyano-

bacteria increase the CO2 concentration near Rubisco

thereby increasing carboxylation and suppressing oxygen-

ation [34]. C4 plants perform C3 photosynthesis that is

supported by a specific CCM, the so-called C4 cycle. C4

photosynthesis has independently evolved in more than

65 plant lineages including highly productive crops such

as sugar cane and maize [35], which also involved the

early re-localization of photorespiration into bundle

sheath to enhance there the local CO2 concentration

[36�,37]. The complex ‘C4 syndrome’ of morphological
Current Opinion in Chemical Biology 2016, 35:109–116 
and biochemical features requires concerted operation of

many genes, and it is easily understandable that artificial

C3 to C4 conversion of crops such as rice will be a long-

term task [26,38]. Recently, it is also discussed how to

establish a cyanobacterial CCM in C3 plants (see

Figure 2). This CCM comprises several bicarbonate

and CO2 uptake systems to accumulate bicarbonate in-

side the cells, which then diffuses into a proteinaceous

micro-compartment containing Rubisco, the carboxy-

some, where carbonic anhydrase converts the bicarbonate

to CO2 [39��]. The feasibility of introducing carboxy-

somes into other organisms has been tested in Escherichia
coli [40]. Tobacco plants expressing cyanobacterial

Rubisco and the carboxysome internal structural protein

CcmM produced aggregates of these two proteins in

the chloroplast, which resembled an early carboxysome
www.sciencedirect.com
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assembly complex [31��]. First attempts to express cya-

nobacterial bicarbonate transporter in plant cells and their

successful targeting to the chloroplast envelope have also

been published [41,42].

Bypassing sections of the photorespiratory pathway

Several strategies were reported which aim at short-circuit-

ing sections of the photorespiratory pathway in plants to

optimise the recycling of 2PG [27]. The first report con-

cerned the introduction of the bacterial glycerate pathway

(see Figure 2), which converts glyoxylate into glycerate,

bypassing the formation of glycine and its conversion into

serine, which is accompanied by the release of NH3 [43�].
To this end, three subunits of glycolate dehydrogenase

(GDH) as well as tartronate-semialdehyde (TSA) synthase

and TSA reductase from E. coli were fused to chloroplastic

import sequences and co-expressed in Arabidopsis. The

resulting transgenic plants showed reduced photorespira-

tion and increased biomass yield under short day condi-

tions. Interestingly, improved growth was unexpectedly

also observed in plants overexpressing GDH alone. This

raises the question of whether or not the glycerate pathway

was functional in these transgenic plants. In a follow-up

study, this group reported that overexpression of an artifi-

cially generated polyprotein comprising all three E. coli
GDH subunits also enhanced photosynthesis and tuber

yield in potato [44]. These authors speculated that the

resulting glyoxylate was completely oxidized to CO2 with-

in the chloroplast by pyruvate dehydrogenase (PDH) [45],

boosting CO2 fixation by Rubisco. A similar strategy was

used with the biofuel crop Camelina sativa, where over-

expressing the complete or partial glycerate pathway in

chloroplasts also resulted in improved growth and higher

seed yields [46].

Full oxidation of glycolate to CO2 at the site of its origin

was attempted by overexpressing GOX, malate synthase

(MS) and CAT in Arabidopsis chloroplasts [47]. This

strategy aimed to increase the chloroplastic CO2 concen-

tration and to reduce the overall flux through the cycle

saving energy for NH3 reassimilation (see Figure 2).

However, considering that the operation of this bypass

would release even more CO2 from glycolate, it is sur-

prising that improved photosynthetic performance and

better growth were observed. The natural decarboxyl-

ation pathway from cyanobacteria [16��] represents an-

other possibility to achieve complete decarboxylation of

photorespiratory glycolate in the chloroplast, which has

not been tested yet.

The bacterial glycerate pathway has also been expressed

in peroxisomes of tobacco, where the substrate glyoxylate

of this pathway naturally occurs [48]. The peroxisomal

expression of glyoxylate carboligase (GCL) and HP isom-

erase (HYI) (see Figure 2), however, did not have bene-

ficial effects on photosynthesis and growth, in contrast to

the chloroplastic expression of the glycerate pathway
www.sciencedirect.com 
discussed above [43�]. Similar observations were made

when the proteins of the cyanobacterial glycerate path-

way were over-expressed in Arabidopsis after fusion with

peroxisomal import sequences [own unpublished obser-

vations].

Notably, although higher photosynthetic rates and yields

were demonstrated in most of these studies, not one of

them provided qualitative or quantitative evidence for

the claim that the anticipated bypass is indeed functional

in planta, for example by genetic experiments, flux anal-

ysis or the demonstration that less ammonia is released by

photorespiration in the transgenic plants. Without such

evidence it is well possible and perhaps even likely that

the observed positive effects on photosynthesis and

growth are due to intervention into the regulatory inter-

play between the photorespiratory pathway and CO2

fixation as discussed below, which however does not

make the above reports less interesting. As glycine is

the major substrate for oxidative phosphorylation in lim-

iting CO2 [49] it is also difficult to predict whether and to

what extent bypassing the mitochondrial part of photo-

respiration would affect ATP synthesis and in turn su-

crose synthesis in the cytosol.

Improving gross photosynthesis by increasing

photorespiratory enzymatic capacity

Regulatory feedback from the photorespiratory pathway

to the CB cycle was long presumed as numerous experi-

ments had consistently shown that affecting photorespira-

tory carbon flow impairs photosynthetic CO2 fixation [50].

In the reverse direction, it was also observed that over-

expression of some photorespiratory enzymes, speeding

up flux through the photorespiratory cycle, improves

photosynthesis and plant growth. For example, overex-

pression of two individual GDC proteins in Arabidopsis,

the so-called H-protein [51��] and dihydrolipoamide de-

hydrogenase (L-protein subunit) [52�], lowered the CO2

compensation points in combination with higher net-CO2

uptake rates and better growth. Similar results were

reported for rice overexpressing mitochondrial SHMT

[53]. Cause(s) and effect(s) are not yet known at the

molecular level, but it appears that the capacity of the

mitochondrial reactions could control overall photore-

spiratory flux and that photorespiratory activity could

regulate the activity of the CB cycle (see Figure 2).

For example, shifting Arabidopsis plants from high

CO2 into ambient air typically results in the massive

accumulation of glycine [54], which also supports the

notion that mitochondrial glycine-to-serine conversion

limits the overall photorespiratory flux.

In addition to regulating photosynthesis, photorespiration

has also major impact on several other fundamental pro-

cesses of plant metabolism. There are clear hints that the

reassimilation of NH3 released during photorespiration

supports nitrate assimilation by C3 plants [55]. Recently,
Current Opinion in Chemical Biology 2016, 35:109–116
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it has been also demonstrated that photorespiratory Pi-

cycling confers growth advantage to woody plants even

when grown in low-O2 environments [56]. Thus, in addi-

tion to strategies that aim at decreasing photorespiration,

targeted modulation of the enzymatic capacity of critical

steps in the photorespiratory pathway may be another

promising way by which photosynthesis and associated

metabolic pathways can be optimised to achieve crop

improvement.

Implementation of newly designed CO2 fixation

pathways into plants

The CB cycle including Rubisco with the later additions

of the photorespiratory pathway and in some organisms

CCMs evolved over several billion years in response to

changing environments. Now, photosynthetic metabo-

lism is presumably perfectly adapted to the conditions

dictated by the results of the evolution of the particular

organism and by the present atmosphere. These con-

straints imply that it will be difficult to establish highly

efficient crops that do not require the photorespiratory

pathway. Synthetic biology may possibly open the way to

implement artificial carbon fixation pathways [21,28�] and

2PG salvage routes. Such hypothetical pathways have

been computed using approximately 5000 known meta-

bolic enzymes and compared on the basis of their kinetic

and energetic properties with the result that some of them

could be distinctly superior to the CB cycle [57]. A

notable advance into this direction was the recent intro-

duction of the 3-hydroxypropionate cycle, which is used

for CO2 fixation by the phototrophic bacterium Chloro-
flexus aurantiacus [58], into the cyanobacterium Synecho-
coccus elongatus, where it could function as additional CO2

fixation pathway and as potential photorespiratory bypass

[59�]. At present, functionality of the introduced pathway

in S. elongatus was demonstrated, but improved growth or

related phenotypic alterations were not observed maybe

due to the operation of an efficient CCM present in this

cyanobacterium. Recently, some of these newly emerging

strategies have been extensively reviewed [28�].

Conclusions
The photorespiratory pathway allows the CB cycle to

operate in the presence of oxygen and thus is a key

constituent of plant metabolism. Having crop yields

and molecular breeding in mind, sensible approaches

to improve photosynthesis will not aim at eradicating

photorespiration but rather attempt to maximise net

carbon gain. This goal can be achieved by establishing

CCMs in C3 crops, maybe in combination with a Rubisco

that has a better carboxylation-to-oxygenation ratio. The

exploitation of regulatory interactions between the indi-

vidual parts of the photosynthetic-photorespiratory met-

abolic network to increase photosynthesis or streamlining

the photorespiratory pathway by the introduction of arti-

ficial routes for the conversion of glycolate to glycerate are

two more presently pursued strategies. Finally, synthetic
Current Opinion in Chemical Biology 2016, 35:109–116 
biology approaches could allow introducing artificial gly-

colate-utilizing pathways that improve net photosynthet-

ic carbon gain. The combined application of these

approaches will open many avenues to improve the plant

carbon assimilation with the final aim to improve crop

yield.
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